深圳市易菱达科技有限公司 当前位置: 首页 >>新闻资讯>>技术交流 |
变频器谐波污染及治理 |
三菱变频器干扰,易能变频器干扰,微能变频器干扰,ABB变频器干扰,富士变频器干扰如何下: 变频器谐波污染及治理 --变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电气设备产生干扰;尤其是在高精度仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离、滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。
一、 变频器谐波产生机理 二、 高次谐波危害
谐波问题由来已久,近年来这一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛使用变频器等电力电子装置,使得与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量增加使用电容器组,并联电容器以谐振的方式加重了谐波的危害。 高次谐波的危害具体表现在以下几个方面。
变压器 感应电动机 谐波同样使电动机铜损和铁损增加,温度上升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。
开关设备
计量仪表 电力电子设备 电力电子设备通常靠精确电源零交叉原理或电压波形的形态来控制和操作,若电压有谐波成分时,零交叉移动、波形改变、以致造成许多误动作. 计算机和一些其它电子设备,通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成生产或运行中断,导致较大的经济损失.
电力电缆 电力电容器 高次谐波由于频率增大,电容器对高次谐波阻抗减小,因过电流而导致温度升高过热、甚至损坏电容器;电容器与系统中的感性负荷构成的并联或串联电路,还有可能发生谐波共振,放大谐波电流或电压加重谐波的危害。经由电容器组电容和电网电感形成的并联谐振回路,可被放大到10-15倍。. 三、 变频器高次谐波污染的解决途径 高次谐波主要通过传导和感应耦合两种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合是指谐波在传导的过程中,与此电源线平行敷设的导线又会产生电磁耦合,形成感应干扰. 在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从抑制干扰源、切断干扰对系统的耦合通道并且避免功率补偿电容器与系统谐振二个方面解决。 解决传导干扰主要是在电路中把传导的高频谐波电流滤掉或者隔离; 合理布置干扰源和被干扰线路的距离、走向,可避免或减少耦合产生。 四、 实际工程抗干扰措施应用: 随着工业生产技术的逐步提高,变频器使用范围的逐步加大,变频器高次谐波带来的确电磁干扰和污染问题也越来越突出,怎样处理好变频器系统的谐波干扰和污染问题也越为越突出,怎么样处理好变频器系统的谐波干扰污染成了变频器进一步推广应用,特别是在对谐波污染要求高的场所的推广应用的关键.
隔离措施 变频器的各种接地在没汇到接地汇流排前,彼此之间应保证绝缘,避免接地干扰。
反谐振措施 调谐滤波电容器组,由数段电容器及调谐电抗器组合而成,每段形成串联共振回路,使共振频率低于最低之谐波频率。对含有5次以上谐波的系统,使用带6%电抗器的调谐式电容器组;对含有3次以上谐波的系统,使用带14%电抗器的调谐式电容器组。在基本波频率(50Hz)下,调谐滤波电容器组呈现电容性,以提供无功功率;而在谐波频率下,则呈现电感性,故与网络不会形成并联共振回路,亦即不会造成谐波放大。因此,调谐滤波电容器组,可安全补偿无功功率,亦可消除低次谐波电流约30%.
滤波技术 |
文章来源:http://www.sjyld.com/te_news_industry/2010-12-12/3367.chtml |